vendredi 1 février 2013

Elements de géométrie: Niveau M1- A. Yger, A. Hénaut


Description :

Cet ouvrage présente, sous une forme unifiée, les géométries différentielle, analytique et algébrique, et montre comment les méthodes de chacune de ces géométries permettent d'approfondir la compréhension des deux autres. Les trois premiers chapitres donnent les rappels nécessaires de calcul différentiel et intégral, et introduisent les concepts de base de la géométrie différentielle. Le quatrième chapitre revient sur les notions classiques de la théorie des courbes et des surfaces de l'espace euclidien. Le lecteur verra comment les concepts généraux introduits dans les premiers chapitres s'appliquent à cette situation concrète. Le dernier chapitre enfin initie le lecteur à la théorie des surfaces de Riemann et la géométrie algébrique, en particulier à la géométrie des courbes algébriques planes. Le texte est éclairé de brèves notes situant dans le temps les contributions des principaux acteurs du développement de la géométrie. En bref, voici un ouvrage d'une richesse exceptionnelle, que tout étudiant ou enseignant en mathématiques aimera lire et relire.


Téléchargement

--> :

SkyDrive

Lecteur DjVu



Aucun commentaire:

Enregistrer un commentaire